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2 EAS 3.7 – Integration

This	achievement	standard	involves	applying	integration	methods	in	solving	problems.

◆  This	achievement	standard	is	derived	from	Level	8	of	The	New	Zealand	Curriculum	and	is	related	to		
	 the	achievement	objectives:
	 ❖  choose	and	apply	a	variety	of	integration	and	anti-differentiation	techniques	to	functions			
	 	 and	relations	using	both	analytical	and	numerical	methods	 	 	 	 	
	 ❖  form	differential	equations	and	interpret	the	solutions	 	 	 	 	 	
	 in	the	Mathematics	strand	of	the	Mathematics	and	Statistics	Learning	Area.	

◆	 Apply	integration	methods	in	solving	problems	involves:
	 ❖  selecting	and	using	methods
	 ❖  demonstrating	knowledge	of	concepts	and	terms	 	 	 	 	 	
	 ❖  communicating	using	appropriate	representations.

◆	 Relational	thinking	involves	one	or	more	of:
 ❖  selecting	and	carrying	out	a	logical	sequence	of	steps

 ❖ connecting	different	concepts	or	representations	
	 ❖  demonstrating	understanding	of	concepts	
	 ❖  forming	and	using	a	model;	
	 and	relating	findings	to	a	context,	or	communicating	thinking	using	appropriate	mathematical		 	
	 statements.

	◆		 Extended	abstract	thinking	involves	one	or	more	of:
 ❖  devising	a	strategy	to	investigate	or	solve	a	problem

	 ❖  identifying	relevant	concepts	in	context	
	 ❖  developing	a	chain	of	logical	reasoning,	or	proof	
	 ❖  forming	a	generalisation;	
	 and	using	correct	mathematical	statements,	or	communicating	mathematical	insight.

◆	 Problems	are	situations	that	provide	opportunities	to	apply	knowledge	or	understanding	of		 	
	 mathematical	concepts	and	methods.		Situations	will	be	set	in	real-life	or	mathematical	contexts.

◆	 Methods	include	a	selection	from	those	related	to:	 	
	 ❖  integrating	power,	polynomial,	exponential	(base	e	only),	trigonometric,	and	rational		 	
	 	 functions	
	 ❖  reverse	chain	rule,	trigonometric	formulae
	 ❖  rates	of	change	problems
	 ❖  areas	under	or	between	graphs	of	functions,	by	integration
	 ❖  finding	areas	using	numerical	methods,	e.g.	the	rectangle	or	trapezium	rule

	 ❖  differential	equations	of	the	forms	y'	=	f(x)	or	y"	=	f(x)	for	the	above	functions	or	situations		
	 	 where	the	variables	are	separable	(e.g.	y'	=	ky)	in	applications	such	as	growth	and	decay,			
	 	 inflation,	Newton's	Law	of	Cooling	and	similar	situations.

Achievement Achievement with Merit Achievement with Excellence
•	 Apply	integration	methods	in	

solving	problems.
•	 Apply	integration	methods,	

using	relational	thinking,	in	
solving	problems.

•	 Apply	integration	methods,		
using	extended	abstract		
thinking,	in	solving	problems.

Integration 3.7
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Integration of Polynomials

Integration of Polynomials
Integration	is	the	reverse	process	of	differentiation	
and	is	also	called	antidifferentiation.		
To	integrate	a	polynomial	we	do	so	term-by-term	
using	the	rule:
Increase the power of the term by one and then divide by 
the new power.

We	can	write	this	as

	 kxn dx∫ 	 =	
k
n +1

xn+1 	+	C
	 	 	

To	integrate	a	polynomial	we	must	ensure	each	term	
of	the	expression	is	in	the	form	kxn.

The	symbol	 ∫ is	used	to	denote	the	integral	and	dx	
tells	us	which	variable	we	are	finding	the	integral	of.

1.	Increase	the		
				power	by	one.

2.	Divide	by	the		
				new	power.

3.	Add	a	new		
				constant	C.

Polynomial
A polynomial is a mathematical  
expression comprising a sum of 
terms where each term includes a 

variable raised to a power and multiplied by a 
coefficient, e.g. 2x3 + 3x2 – 4x + 1.

Integrate	the	expression

I	=	 12x3 – 6x + 3 – 6 x∫ + 3
x2
dx

We	begin	by	rewriting	all	the	terms	in	
the	expression	in	the	form	kxn.

	 I	=	 12x3 – 6x + 3 – 6x1/2∫ + 3x–2dx

	Integrating	term-by-term

	 12x3	 becomes	 12x3+1

4
	 =	3x4

	 –	6x	 becomes	
– 6x1+1

2
	 =	–	3x2

	 			3	 becomes		 3x0+1

1
	 =	3x

		 – 6x1/2 		becomes		
– 6x

1
2
+1

1
2
+1

	 =	
– 6x3/2
3
2

	 =	 – 4x3/2

and				3x–2	 becomes	 3x
– 2+1

–1
	 =	–	3x–1

so
	 I	=	 12x3 – 6x + 3 – 6x1/2∫ + 3x–2dx
becomes
	 I	=	3x4	–	3x2	+	3x	–	4x3/2	–	3x–1	+	C	

	 		=	 3x4 – 3x2 + 3x – 4 x3 –
3
x
+C

Example 

Constant of Integration 
When we differentiate any function 
any constants (e.g. 5) differentiates 
to 0.  Therefore, when we are doing 

the reverse and integrating it is not possible 
to identify a constant in the resulting integral.  
Demonstrating this
If f(x) = 4x6 – 3x + 5
 f’(x) = 24x5 – 3
If we now integrate f’(x) to recover f(x) we no 
longer have the information needed to recover 
the constant 5.
To get around this problem, when integrating 
an expression, we always add a constant C at the 
end of the integral.

Integration of x–1

The given integration rule cannot 
be used to integrate x–1, because 
increasing the power of x by one 

and dividing by the new power would result in 
1
0

 which is undefined.  We need to use another 

approach to integrate 1
x

, see Page 11.

Find	 A(x+1)2 dx∫

Example 

We	begin	by	putting	the	constant,	A	
in	front	of	the	integral	sign	before	we	
integrate.

=	=A (x+1)2 dx∫
=	A (x+1)(x+1)dx∫
=	A x2+ 2x+1dx∫
=	A(x

3

3
+
2x2

2
+x)+C

=	A(x
3

3
+x2+x)+C

For the example above we could 
have expressed the constant as AC, 
because A is a multiplier for the 
entire integral, but as the constant of 

integration is an unknown constant, AC is also 
an unknown constant, so we just represent it 
with C.

©
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Find	the	area	between	the	curve	f(x)	=	x3	–	4x2	–	x	+	4	
and	the	line	g(x)	=	4	–	x	from	x	=	0	to	x	=	4.

Find	the	area	between	the	curve	
f(x)	=	2x3	+	3x2	–	5x	–	6	and	the	x	axis	from		
x	=	–2	to	x	=	1.

	 Area		=	Area	above	+	Area	below	

	 Area		=	 2x3 + 3x2 – 5x – 6 dx +
– 2

–1

∫

	 	 															 	 2x3 + 3x2 – 5x – 6 dx
– 1

1

	 Area		=	
2
4
x4 + x3 – 5

2
x2 – 6x⎡

⎣⎢
⎤
⎦⎥ – 2

–1

+

	 	 	 											
2
4
x4 + x3 – 5

2
x2 – 6x⎡

⎣⎢
⎤
⎦⎥ –1

1

	 	=	
1
2
–1 – 5

2
+ 6⎛

⎝⎜
⎞
⎠⎟
– 16

2
– 8 – 20

2
+12⎛

⎝⎜
⎞
⎠⎟
+

	 	 	
1
2
+1 – 5

2
– 6

⎛
⎝⎜

⎞
⎠⎟
–
1
2
–1 –

5
2
+ 6⎛

⎝⎜
⎞
⎠⎟

	 	=	3	–	2	+|–7	–	3|

	 	=	1	+	10

	 	=	11	units2

f(x)

x1
4

g(x)

–1

4

-1-

f(x)

x
1

2

ExampleExample

Although	the	curve	is	above	and	below	
the	x	axes	we	are	only	interested	in	the	
enclosed	area.

If	we	let		 D(x)	=	g(x)	–	f(x)

then	as	g(x)	is	always	above	f(x)	from	x	=	0	to	x	=	4	
then	D(x)	is	positive	in	this	region.

Therefore	we	can	integrate	it	to	find	the	area	
enclosed.

	 Area	 =	 D(x)dx
0

4

∫

	 	 =
	
g(x)− f(x)dx

0

4

∫

	 	 =
	
(4−x)−(x3−4x2−x+ 4)dx

0

4

∫

	 	 =
	

−x3+ 4x2 dx
0

4

∫

	 	 =	
−x4
4 +

4
3 x

3⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
0

4

	 	 =	 2113 	
units2

It is important we set D(x) equal to the 
higher expression (g(x) minus the lower 
expression f(x)) over the range otherwise 
the integral would be negative.

©
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For displacement:
s(0)		 gives	the	initial	displacement	of	the	object		

(t	=	0).
s	=	0		 is	used	to	solve	for	the	time(s)	t	when	the	

object	is	at	the	reference	point.
For velocity:
v(0)	 gives	the	initial	velocity	of	the	object	(t	=	0).
v	=	0	 is	used	to	solve	for	the	time	t	when	the	

object	is	momentarily	at	rest.
v	>	0	 the	object	is	travelling	away	from	the	start.
v	<	0	 the	object	is	travelling	back	to	(towards)	the	

start.
For acceleration:
a(0)	 gives	the	object’s	initial	acceleration.
a	=	0	 is	used	to	solve	for	the	time	t	when	the	

object	is	not	accelerating	(speed	or	velocity	is	
constant).

a	<	0	 the	object	is	slowing	down.
a	>	0	 the	object	is	speeding	up.

Rates of Change – Kinematics

Rates of Change

Application	problems	that	involve	functions	of	
time,	i.e.	displacement,	velocity	and	acceleration	
can	be	solved	using	calculus	techniques.
Since	differentiation	gives	us	the	instantaneous	rate	
of	change	we	can	use	it	to	find	the	rate	of	change	of	
different	expressions.
Displacement is	the	distance	in	a	particular	
direction.		The	rate	of	change	of	displacement	
is	velocity and	the	rate	of	change	of	velocity	is	
acceleration.
If	we	want	to	form	a	velocity	function	from	a	
displacement	function	we	differentiate.		If	we	want	
to	form	a	displacement	function	from	a	velocity	
function	we	integrate.
The	same	applies	to	velocity	and	acceleration.

	
For	example,	if	we	have	the	velocity	function	of	a	
ball	thrown	vertically	upwards	
	 v(t)	=	24	–	10t		m/s
The	displacement	function	for	this	ball	is
	 s(t)	=	∫	v(t)	dt
	 s(t)	=	∫	24	–	10t	dt
	 s(t)	=	24t	–	5t2	+	C		m
where	C	is	the	displacement	at	time	t	=	0.
Similarly,	if	we	had	the	same	velocity	function	
and	we	wanted	the	acceleration	function	we	
differentiate
	 v(t)	=	24	–	10t
	 a(t)	=	–10		m/s2

Units for Velocity and Acceleration
If the units for displacement are metres 
and time is measured in seconds, then 

the units for velocity are metres per second (m/s) 
and the units for acceleration are metres per second 
squared (m/s2).

Velocity and Speed
The correct term for the rate at which 
displacement changes is velocity.  

Speed is just a measure of how quickly distance 
is changing and does not take into account the 
direction.

Look out for these key words
At ‘rest’ means velocity is zero (v(t) = 0).
Constant speed means no acceleration,  
a(t) = 0.

Maximum (or minimum) displacement means the 
object has momentarily stopped and is about to head 
back.   The velocity is always zero (v(t) = 0) when the 
distance is a maximum (or minimum).
Initial position or velocity is when t = 0.

Displacement function s(t)

Acceleration function a(t)

Velocity function v(t)

Differentiate

Differentiate

Integrate

Integrate

©
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n xn y0	+	yn yOdd yEven

0 0 0

1 0.5 1.25

2 1.0 3.00

3 1.5 5.25

4 2.0 8.00

5 2.5 11.25

6 3.0 15.00

7 3.5 19.25

8 4.0 24.00

Sums	
of	y

24.00 37.00 26.00

Simpson’s Rule cont...
Generalising	the	rule	to	cover	n	columns	we	get

( ) ... ...f x dx h y y y y y y y y1
3 4 2

a

b

n n n0 1 3 1 2 4 2= + + + + + + + ++- -^ ^h h7 A#

( ) ... ...f x dx h y y y y y y y y1
3 4 2

a

b

n n n0 1 3 1 2 4 2= + + + + + + + ++- -^ ^h h7 A#

where	 ( )h n
b a and y f xr r= - = 	and	n	is	even.

n	must	be	even	as	the	rule	requires	pairs	of	
columns.

Using	Simpson’s	rule,	find	the	area	under	the	
function	f(x)	=	x(x	+	2)	between	x	=	0	and	x	=	4	
using	eight	subintervals.

	 h	 =	 b – a
n

	 		=	 4 – 08
	 		=	0.5		
We	calculate	the	required	values	in	the	table	below.		
The	table	helps	make	sure	we	keep	the	first	+	last,	
even	columns	and	odd	columns	separate.

Example 

	 Area	 =	
h
3 (y0	+	y6	+	4yOdd	+	2yEven)

	 	 =	 0.53 (24	+	4	x	37	+	2 x 26)

	 	 =	37.33	units2

This	is	the	same	
example	as	in	the	
Trapezium	rule.

n xn y0	+	yn yOdd yEven

0 9 13.3

1 11 14.5

2 13 17.2

3 15 15.3

4 17 14.8

5 19 12.7

6 21 9.7

Sums	
of	y

23.0 42.50 32.0

We	need	to	know	the	cross-sectional	area	of	a	
boat	channel	in	a	river.		The	table	has	depth	
measurements	from	the	shallow	side	of	the	river.		
The	river	flows	down	the	boat	channel	at		
4.3	m/s.		Use	Simpson’s	rule	to	calculate	the	cross-
sectional	area	and	volume	of	water	per	second.

	 h	 =	 b – a
n

	 		=	 21−96
	 		=	2.0	m		
Watch	that	you	have	a	zigzag	pattern	in	your	table.

Example 

	 Area	 =	
h
3 (y0	+	y6	+	4yOdd	+	2yEven)

	 	 =
	
2
3 (23.0	+	4	x	42.5	+	2 x 32.0)

	 	 =	171.3	m2

	 Volume	 =	area	x	rate	of	flow
	 	 =	736.6	m3/s

With	Simpson’s	
rule	n	must	be	
even.

x 9 11 13 15 17 19 21

Depth	
(y)

13.3 14.5 17.2 15.3 14.8 12.7 9.7

9 m 21 m©
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74 EAS 3.7 – Integration

Example
If	the	rate	at	which	an	investment	in	art	
appreciates	depends	upon	the	value	of	the	piece	
of	art

	 dP
dt 	

=	iP

find	the	annual	rate	of	appreciation	of	an	
artwork	which	was	purchased	for	$12	500	and	
was	valued	at	$14	300	five	years	later.

Assuming	the	rate	of	inflation	is	constant	and	it	
appreciates	according	to	the	differential	equation,	

	 dP
dt 	

=	iP

find	the	value	(to	3	sf)	of	a	house	in	January	2017	
if	it	was	valued	at	$240	000	in	January	1997	and				
$620	000	in	July	2008.

For		 dP
dt 	

=	iP

the	general	solution	is		

	 P	=	P0	eit						

Since	P0	=	12	500	when	t	=	0

	 P	=	12	500eit

When	t	=	5,	P	=	14	300	so

	 14	300	=	12	500	e5i

Solving	for	i	by	dividing	through	by	12	500

	 e5i	=	1.144

Taking	logs	of	both	sides

	 ln(e5i)	=	ln(1.144)

Since		ln(e5i)	=	5i	and	ln(1.144)	=	0.134	53

	 5i	=	0.134	53

	 i	=	0.0269	 (3	sf)

	 	=	2.7	%	pa

For	 dP
dt

		=	iP

the	general	solution	is

	 P	=	P0	eit	

Let	January	1997	be	t	=	0

	 240	000	=		P0	e0

	 P0		=	240	000

so	P0	becomes	the	initial	value	at	t	=	0.

In	July	2008,	t	=	11.5	so	

	 620	000	=	240	000	e11.5i	

	 e11.5i		=	
620 000
240 000

	Solving	for	i	by	taking	logs	of	both	sides

	 ln(e11.5i)	=	ln(2.5833)

	 11.5i	=		0.949	081

	 i	=		0.082	529	(8.25%)

So	in	January	2017	when	t	=	20

	 P	=		240	000e0.082	529	x	20

	 P	=	$1	250	000	(3	sf)

Example

©
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89EAS 3.7 – Integration

Page 20

99. ln|tan 2x| + C 
100. ln|cos 3x| + C
101. 2ln|cosec 5x| + C 
102.  2ln|7 – sin 4x| + C 
103. ln|ln|x|| + C
104. ln|e3x + 7| + C
105. 2 ln|ex

2
 – 3| + C 

106. –ln cos x − π
4

⎛
⎝⎜

⎞
⎠⎟

 + C

107. ln|cos x + sin x| + C

108. 1
2

ln|e2x + 2x| + C

Page 22

109. ∫ 4(sin 6x + sin 4x) dx

      = 
− 2
3

 cos 6x – cos 4x + C

110. ∫ 4(sin 4x – sin 2x) dx

      = –cos 4x + 2cos 2x + C

111.  6sin 2x – 2sin 6x + C 

112. –0.4 cos 10x – 2 cos 2x + C

113. 5
8

sin 8x + 5
2

sin 2x + C 

114. 
−3
22

cos 11x + 3
2

cos x + C   

Page 23

115. 4tan x – 4x + C 

116. 1
4

sin 2x + 1
2

x + C   

117. sin 2x + 2x + C

118. –20 cot x – 20x + C

119. 1
2

sin 2x + C  OR
 sin x cos x + C

120. 2x – sin 2x + C  OR 
–2 sin x cos x + 2x + C

121. 6x + 3sin 2x − π
3

⎛
⎝⎜

⎞
⎠⎟
 + C  Other

  forms of this answer possible.

122. –4cos 2x + 2π
5

⎛
⎝⎜

⎞
⎠⎟
 + C  Other 

 forms of this answer possible

123. 2x2 + 6x – 3
2

sin 4x + C

124. 6x – 4 sin 2x + 1
2

sin 4x + C

Page 14 cont...

70. Ax
2

2
 + Bln|x| + D

x
 + C 

71. 1
3

x3 – 3
2

x2 + 5 ln|x| + C

72. x5 + 2 ln|x|– 3
x

 + C

73. 1
5

x5 + 1
6

x2 – 5
3

 ln|x| + C

74. ln|x| + B
Ax

+ C

Page 16

75. 3x – 11ln|x + 1| + C

76. 3x + 9ln|x – 2| + C 

77. 2x – 7
4

ln|4x + 5| + C

78. 3x + 18ln|x – 6| + C 

79. 3x + 1
2

ln|2x – 1| + C 

80. –6x – 6 ln|1 – x| + C 

81. 2x + 1
4

 ln|4x + 3| + C 

82. x
2

 + 1
2

ln|2x – 2| + C 

Page 17
83. 2x – ln|x – 1| + C 
84. –3x + 13 ln|x + 4| + C 
85. x – 4 ln|2x + 3| + C 
86. 3x + 4 ln|3 – 2x| + C 
87. 4x + 8 ln|x – 2| + C 

88. x
3

 – 2
9

 ln|3x + 2| + C 

89. –7x – 32 ln|x – 5| + C 
90. 2x – ln|2 – x| + C 

Page 19
91. ln|6x + 3| + C 
92. 3 ln|x – 2| + C 
93. 2 ln|x2 + 1| + C 

94.  
A
3  ln|3x – 1| + C

95. ln|x2 – 3x + 1| + C 
96. 2ln|x2 + x – 2| + C
97. 2ln|x2 – 1| + C
98. ln|e2x – 5| + C

Page 25

125. (2x + 3)6 + C

126. 
– 6

(x − 2)5
 + C

127.  3(x – 6)4 + C

128.  
– 8

(x + 2)3
 + C  OR

 –8 (x + 2)–3 + C

Page 26

129. 5(x + 3) – 9 ln|x + 3| + C

130. 
2
5
(x + 2)5/2 – 4

3
(x + 2)3/2 +C

131. 1
2

(x2 + 4)6 + C

132. 8 x + 2 + C

133. 1
7

(x + 5)7 – 5
3

(x + 5)6 + 5(x + 5)5  
                + C

134. ∫ (2u + 5)u5  du

 = ∫ 2u6 + 5u5   du

 = 2
7

(x – 2)7 + 5
6

(x – 2)6 + C    

135. ln|x – 3|– 3
x − 3

 + C

136. 
–1

2(x2 + 4x + 5)2  + C

Page 27

137. 25(x + 2)6/5 + C

138. 1
8

(x2 + 5)4 + C

139.  ln|ln|x|| + C

140. ln|ex – 2| + C

141. 1
3

(2x – 1)3/2 + (2x – 1)1/2 + C 

 =1
3
(2x −1)3  + 2x −1 + C

142.  1
3
(2x −1)3  + 2x −1 + C

 = 2
3

(x + 1) 2x −1 + C

143. 3ex
2
 + C

144.  3ex
2
 + C
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